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1. INTRODUCTION

There is an extensive literature on moments of mass distributions

f(x) = JA'" dl-l-(II),

and the corresponding means

m(x) = (f(x)/f(O))lf"',

m(O) = exp(f'(O)/f(O)).

(1)

(2)

See, for example, Shohat and Tamarkin [13], Rosenbloom [12], Waid [15],
Karlin [7], Cargo [2].

If 1-1- is a mass distribution on R+ = {A III ~ O}, then its moment function
is a Mellin-Stieltjes transform, which is equivalent to a two-sided Laplace
Stieltjes transform (see Widder (16)). It is well known that the mass distri
bution 1-1- is uniquely determined byJ, and there are several inversion formulas.
Indeed, under various conditions, 1-1- is already determined by the values off
at the integers, or other denumerable sets (Mlintz [10], Szasz [14], Feller [5)),
and thereforefis completely determined by its values on such a set. Examples
of the nonuniqueness of 1-1-, given the values off at the nonnegative integers
(P6lya and Szego [11], vol. I, page 134, problem 153) show that some hypo
thesis is required to ensure the uniqueness.

By Andre Bloch's principle (see [I)), every theorem in the infinite must be
a limiting case of theorems in the finite. This suggests the search for ine
qualities relating such quantities as 1-1-(1), J any given subinterval of R+,
or f(x) , for a given x, to the values off at any given finite set of points.

One general method of obtaining such inequalities in terms of the values
off at the nonnegative integers is due to Chebyshev, Markov, and Stieltjes,
and is presented in [13). Another approach, applicable to more general
interpolation conditions, was given by us in [12].
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In this paper, we shall work out a few of the simpler applications of our
method, and show how a number of recent results (Cargo and Shisha [3, 4],
Mond and Shisha [9a, 9b]) follow easily from ours. We also give a few
general properties of the extremal moment functions, which may be helpful
in treating caseswhere it is difficult to find explicit formulas forthesefunctions.

Among the applications, we may mention, in particular, that if A is a
nonnegative self-adjoint operator on a Hilbert space .Yf', and gis any vector
in .Yf', then

where

and E is the spectral measure associated with A. Hence the inequalities
obtained here can be applied to analyze the action of A on the cyclic subspace
of .Yf' generated by g.

2. THE EXTREMAL MOMENT FUNCTONS: SUMMARY OF RESULTS

We begin by sketching the form which the main results of [12] take,
when applied to integrals of the form (1). We shall consider only measures p..
with support contained in a given interval [m, M], where 0 ~ m < M < + 00.

The kernel K(A, x) = AX is Cartesian, that is, if Xl < X 2 < ... < X n ,

then the number of zeros of the function

in R+ is at most equal to the number of variations of signs in the sequence
(al , .•• , an) of its coefficients. This yields, according to the theory in [12]

THEOREM 1. Let Xl < ." < X n and CI , ..• , Cn be given, and let ofF =
ofF(XI , ... , X n ; CI , ... , cn) be the class of moment functions of the form (1)
satisfying the interpolation conditions

1 ~j ~ n. (3)

If .fF is nonempty, then it contains two functions ep and t/J such that

ep(X) ~f(x) ~ t/J(x) (4)

on the intervals (xn , + (0), (X n-2' x n - l ), etc., and the reverse inequalities
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in the complementary intervals. If, for any x other than the interpolation
points Xj, 1 ~j ~ n,j(x) equals rex) or If;(x), then that equality holds iden
tically. These extremal moment functions correspond to discrete mass distri
butions with masses at most n points.

We can specify the extremal mass distributions more precisely. Let
w(x) = 2 for m < x < M and w(m) = w(M) = 1. We define the weight
of a set as the sum of the values of w(x) for x in the set. The weight of a
moment function is defined as the weight of the support of its mass distri
bution. A moment function of a discrete distribution is an exponential
polynomial with positive coefficients. If f is such a moment function, then
the weight of f is the maximum of the number of sign-variations in the
coefficients off - g, where g ranges over the set of all admissible moment
functions of discrete distributions.

THEOREM 2. The mass distributions associated with the exttemal moment
functions in Theorem 1 are contained in sets of at most weight n.

For example, if n = 1, so that? is defined by the single interpolation
condition

(5)

then both r and If; correspond to masses placed at one endpoint. They
must therefore have the forms am'" or AM"', where a and A are constants.
Hence for allfsatisfying (5), we have

for x > Xl , and the reverse inequalities for x < Xl . This yields the trivial,
but useful, results that

f(x)fm'" is increasing or constant,
and

f(x)fM'" is decreasing or constant.

Already for n = 2 we obtain nontrivial results. Now one extremal distri
bution has masses at the two endpoints of the interval [m, M], while the
other has a mass at one interior point. Since rex) < If;(x) for large x, we
must have

If;(x) = Am'" + BM'"
and
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where A, B, and a are constants, and m ~ k ~ M. An easy computation
yields

and

x _ (I(xl) M"'o-Xl - f(X2» m X- X1 + (I(x2) - f(xl) mX2 -"'1) M"'-Xl

lj;( ) - M"'2-"'1 - m"'.-"'l

The inequality

(6)

(7)

f(x) ~ ep(x)

is equivalent to the well known fact logfis a convex function. The inequalities

lj;(x) <f(x)

and the reverse for x < Xl or X > X2 may be new. The inequalities of Cargo
and Shisha [3] and Mond and Shisha [9] can be obtained from this by
elementary calculus, and these, in turn, contain well known results of
P61ya and Szego [11, vol. I, pp. 57, 213-214], and Kantorovich [6].

The case n = 3 is already more complicated. Now ep and lj; have the forms

ep(x) = am'" + bk"',

lj;(x) = AK'" + BM"',
(8)

where the coefficients are nonnegative constants, and k and K are in the
interval [m, M]. The points k and K, at which the masses are located, are
determined by equations which are transcendental, unless p = (x3 - x l )/

(x2 - Xl) is rational. If p = via, where v and a are relatively prime integers,
then we obtain for each of k and K an algebraic equation of degree v, one
of whose roots is trivially known. Hence in such a case the determination
of k and K can be reduced to the solution of an algebraic equation of degree
v - 1. For small v we can obtain simple explicit formulas for ep and lj;.

For example, if p = 2, then we can normalize the various parameters
so that Xl = -1, X2 = 0, X3 = 1, C2 = 1 = m. We find that if the support
of fL is contained in the half-line [l, +00) then

f(x) _ 1 ;;? (1 - f(-I»(I(1) - 1) ( f(l) - 1 )'"
f(1) + f(-1) - 2 1 - f(-I)

for X > 1 or -1 < X < 0, and the reverse inequality in the complementary
intervals. In particular, we obtain the inequality

M - 1· fi( )1/"':> f(1) - 1
- X~~"' X ~ 1 - I(-1) ,
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which gives a lower bound for the range of the distribution. We note that
the logarithmic convexity of f only yields the estimate M ~ f(I), which is
weaker except when all the mass is at one point.

For n > 3 the extremal moment functions are still more difficult to deter
mine, except when the Xj are in arithmetical progression.

3. THE CASES n = 1 AND n = 2

As mentioned before, the case n = I reduces to the trivial result:

THEOREM 3. The ratio f(x)(m" is increasing or constant, while the ratio
f(x)(M" is decreasing or constant.

The case n = 2 gives the formulas (6) and (7) for the extremal functions
rp and ifi. The fact that f(x) is always between rp(x) and ifi(x) may also be
expressed as follows.

THEOREM 4. The function logf(x) is a convex function. The mean m(x)
is increasing or constant.

The function

( )
_ fex) M-" - f(O)(m/ M)"

r x - I _ (m/M)" (9)

is decreasing or constant. It is constant if and only if all the mass /L is at the
endpoints of the interval [m, M].

Since

f(x) M-" = f(O) - (I - (m/M)")(f(O) - rex»~

and 1 - (m/My is increasing, Theorem 4 is stronger than the second part
of Theorem 3.

Cargo and Shisha [3] solved the problem of finding the maximum of the
ratio m(y)/m(x) for given x, y, x < y, and given m and M. We now show
how their result follows by elementary calculus from Theorem 4.

Without loss of generality, we may assume that 0 < x < y, x < y, and
take Xl = 0, X2 = x, Xa = y, and CI = f(O) = 1. We also set p = y/x.
Then we have

m(y)Y/m(x)Y = f(y)/f(x)p

:s;; ifi(y)/f(x)p,
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so that the Cargo-Shisha problem reduces to that of finding the maximum of
if;(y)!f(x)p, given x, y, M, and m. We setf(x) = t,

R = (M'" - m"') if;(y)/f(x)p = (At - B) t-p

where

By Theorem 3, t is restricted to the interval [m"', MX].
The maximum of R for t > 0 is attained at t = T, where

T = pB/((P - 1) A).

If we set y = Mlm, then we see that

pm"'yX(yY-X - 1)
T = -'-;-(p----'-_---:I:-7-)(.,,-y-Y--~l) .

The fact that T is an admissible value for t follows from

An elementary computation now yields the maximum of R.

(10)

COROLLARY 4a (Cargo and Shisha [3]). If f(O) = 1, 0 < x < y, then

where P = ylx and y = Mix. The equality holds if and only if all the mass JL
is at the endpoints of[m, M] andf(x) = T in (10).

The other cases considered by Cargo and Shisha (x < 0 < Y and x < y < 0)
can be handled by noticing that

where

also is the moment function of a measure with support in em, M]. The
limiting cases where x or y is 0 can be handled by using the formula for
m(O) in (2).

We can, in a similar way, reduce the problem solved by Mond and Shisha
[9] to a problem in elementary calculus. The problem is to find the maximum
of the difference m(y) - m(x) for given x, y, x < y, and m and M.
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We may take the same normalization as before, and set

I(x) = (mt)"'.

Then we have

341

m(y) - m(x) ~ if;(y)l fy - mt = mh(t),

where if; is given by (7). We find (see Appendix) that h(I) = hey) = 0,
h(t) > 0 in (1, y), and h(t) < 0 outside [1, y]. This function h has exactly
two relative extrema, a relative minimum at a point t1 < 1 and its absolute
maximum, attained at a point t2 in (1, y).

COROLLARY 4b (Mond and Shisha). If1(0) = 1, x < y, xy oF 0, then

where
h(t) = (A + Bt"')l!Y - t,

A = (y'" - yY)!(y'" - 1),

B = (yY - I)!(y'" - 1),

(11)

(12)

and t2 is the unique point in the interval (1, y) where h attains its maximum.
If y oF 1, then t2 is the unique zero of

J(t) = A + Bt'" - C1t(1-",)Y!(l-Y),

C1 = (y!(xB»Y!(l-Y),

in the interval [1, y]. For y < 1, J has one other positive zero, and this is in
the interval (0, 1).

The equality in (11) is attained only when I-' is the discrete distribution
with mass

w = (t2'" - I)!(yX - 1)

at M and mass 1 - w at m.
If y = 1, then t2 is the positive root of

xBt"'-l = 1.

Clearly both corollaries are special cases of

(13)

COROLLARY 4c. Let G(X, Y) be monotonically increasing in Y for
0< X < Y. Then iff(O) = 1, x < y, we have

max G(f(X)l/"',/(y)l/Y) = l~:~Y G(mv, meA + BvX)l/Y),
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where A and B are given in (12). The maximum is attained only when p, is a
discrete distribution with masses w at M and 1 - w at m, where w is given
by (13), and v is a point where G(mv, meA + Bvx)l/Y) attains its maximum
in [1, y].

We now wish to interpret these inequalities. In the following, the quantity

the mass placed at the point M, plays an important role. We begin with an
elementary remark, which must be well known.

THEOREM 5. Iff is given by (I), then limx~+oof(x) M-X = Q'.

Proof Obviously we have

On the other hand, we see that for m < a < M,

f(x) :S;; p,([a, M]) MX + p,([m, a)) aX,

so that

Q' :S;; lim j(x) M-x :S;; p,([a, M]).
x~+oo

We now let a approach M-, and obtain the stated result.
Thus the ratio f(x) M-X decreases to (X as x increases, unless all the mass

is at M and the ratio is constant. Theorem 4 says that the ratio rex), in (9),
also decreases to (x, unless all the mass is at the two points m and M and
then this ratio is constant. This gives a sharper upper bound for (x, using the
additional information of the values of m and f(O), as well as that of f(x).
For we have

rex) <f(x) M-x,

unless all the mass is at M.
For further reference we note the following alternative form of the

inequality fey) :S;; if;(y) in the present case of n = 2:

I
mX, j(x1) M"l I

O:S;; m X2 f(X2) MXo.
mXa j(xa) MXa

We do not know any really good analog for n > 2.



INEQUALITIES FOR MOMENTS AND MEANS

4. THE CASE n = 3
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In order to avoid a profusion of subscripts, let us set Xl = 0, X 2 = X,

X 3 = y. Without loss of generality, we may assume Cl = f(O) = 1. Now
T and z/J are given by (8), where k and K are determined by the equations

I
m'" k'" f(x) =0
mY kY f(y)

and (14)
I I I

K'" M'" f(x) = 0,
KY MY f(y)

respectively. These equations can be put in the alternative forms

l(y) m-Y - I f(x) m-X - I
(klm)Y - 1 (klm)X - 1

and (15)

I - f(y) M-Y I - j(x) M-x
1 - (KIM)Y 1 - (KIM)'"

,

or

(kim)! - I f(y) m-Y - I
(klm)X - 1 f(x) m-X - 1 '

and (16)

I - (KIM)Y I - f(y) M-Y
1 - (KIM)x 1 -f(x) M-x •

If we set p = yjx > 1 and

.\0 - I
g(.\) = x-=l

= p C(1 + s(.\ - 1))0-1 ds,
(17)

'0

we see that g is strictly increasing for .\ ~ O. Since, by Theorem 4, the ratio

((y) m-Y - 1
r = -j-;:7'(x-2)-m---:x:---_-71

is greater than g(l) = p unless all the mass is at m, we find that the equation
g(.\) = r has a unique positive root .\0 , and.\o > 1. Then k in (16) is uniquely
determined as
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Theorem 4 also implies that

so that
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r < g«Mfm)<I'),

k<M,

unless all the mass is at m and M.
Similarly we show that K is uniquely determined and is in the interval

[m, M]. It is an endpoint of the interval if and only if all of the mass ft is at
the endpoints.

We note also that t/J - rp has zeros at 0, x, and y, so that there must be
at least three sign-variations in the coefficients of this exponential polynomial,
unless t/J and rp are identical. Hence we find that

K<k,

unless all the mass is at one point.

THEOREM 6. Iff(O) = 1, then the inequalities

rp(z) ~ fez) ~ t/J(z)

hold in (0, x) and (y, +00), and the reverse inequalities In (- 00,0) and (x, y),
where rp and t/J have the form (8), and k and K are the unique positive roots
of (16). If any of the equalities in (18)'1 holds at any point other than 0, x,
and y, then that equality holds identically.

The positive roots of (16) satisfy

m < K<k < M,

unless all the mass is at the endpoints of [m, M].

The inequality fez) < t/J(z) can be put in the form:

COROLLARY 6a. If K is determined by (16), then

fez) M-Z - (KIM)z
s(z) 00= 1 _ (KIM)" ~ s(y)

for z > y or °< z < x. The mass ex at M satisfies

ex ~ s(y).

Actually this result can be sharpened.

(18)
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COROLLARY 6b. The ratio s(z) in (18) is decreasing or constant for z > y
and increasing or constant for z < x. It is constant ifand only ifall the mass fL
is at the points K and M.

Proof We may assume that s is not constant, so that not all the mass is
at the points K and M. If there are Zl and u such that y < Zl < u and
s(u) ~ S(Zl)' then there is a z in (y, Zl] such that s(z) = s(u). Then K is also
the solution of (16) with x and y replaced by z and u, respectively. Let
if;1 be the extremal function for the interpolation with prescribed values
at u, z and u. It follows from Theorem 6 that

f(t) < if;1(t) for 0 < t < z,

and for t = Y this contradicts (18).
We can treat the intervals (0, x) and (- 00, 0) in the same way.
Thus the ratio s(z) decreases to ex as z increases to +00. Since m < K

unless all the mass is at two points, we see that

s(z) < r(z) for z > y

so that s(y) gives a sharper estimate for ex than is given in Theorem 4.
It is of interest that if; is independent of m, and that K provides an upper

estimate of m. If g is defined by (17), then the inequality

f(X)l/x ~f(y)l/Y

implies that
g(f(x)(MX) ~ g«K(M)X).

Hence we have

and the equality holds if and only if all the mass is at one point. Thus the
upper estimate K for m, in terms of the data f(x), f(y), and M, is sharper
than the estimates usingf(x) alone.

Similarly we can prove

COROLLARY 6c. The ratio

f(z) m-z - 1
Sl(Z) = (k(m)z - 1

is increasing or constant for z > y and decreasing or constant for z < x.
It is constant if and only if all the mass is at the points m and k.

The special case z = 0 may be of interest:
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COROLLARY 6d. The inequality

1'(0) - log m
Sl(Z) ::( SI(O) = log(kjm)

holds for 0 < Z < x and the reverse for Z < o.

From the monotonicity of g in (17) and the inequality

for s > I,

we obtain these estimates

(
f(x) M-X - fey) M-1/ )1/X

K ? M 1 _ fey) M 1/ '

and

(
f(Y) m-1/ - 1 )1/(1/-X)

k ::( m f(x) m-X - 1

(19)

Both are asymptotic equalities for large y, if m, M and x are held constant.
For p = 2, 3, and 3(2 we can give simple explicit formulas for k and K

in terms of the quantities

I - fey) M-1/
S = 1 - f(x) M x '

and

fey) m-1/ - I
s = -"-::':''-7----:;-

f(x) m-X
- I

We obtain:

for p = 2,

K = M(S - 1)I/X, k = m(s - 1)1/x;

for p = 3,

K = Mal/x, k = mT1/ x,

g(a) = a2 + a + I = S;

geT) = s, 0 < a, T;

and for p = 3(2,

g(a2
) = (a2 + a + I)(a + 1) = S,

g(T2) = S.
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5. THE CASE n = 4
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We may take the interpolation points as 0, x, y, z, in increasing order.
Now the extremal functions have the forms

ljJ(t) = Amt + BRt + eMt,

ep(t) = a'lt + b'2t
•

(20)

The constants R, '1 , and '2 , are determined by the following equations:

1 1 1

heR) = m"' R"' M"' f(x)
=0,mY RY My fey)

mZ RZ Mz fez)

I,:' 1 +:. I I
, "' f(x) '2"' f(x) =0.2

'lY '2Y fey) 'lZ
'2

Z j(z)

(21)

(22)

These are transcendental equations unless x, y, and z are commensurable.
The function h(exp t) is an exponential polynomial whose sequence of
coefficients has 3 sign-variations. Hence it has one or three real roots.
Since hem) = heM) = 0, therefore h has just one other positive root, which
must be between m and M.

The system (22) has at most one solution with °< '1 < '2 . For if there
were two, there would be two functions of the form of ep in (20) satisfying
the interpolation conditions at 0, x, y, and z. But their difference would have
at most 3 sign-variations in the coefficients, and therefore less than 4 non
negative roots. Since an extremal function ep exists, then there is a unique
positive solution ('1' '2) of (22), and m ~ '1 < '2 ~ M. (If '1 = '2' then
this moment function of a mass at one point is the only one satisfying the
interpolation conditions, and ep = ljJ.)

Since ljJ - ep has at least 4 nonnegative roots, then there must be at least
four sign-variations in the coefficients. We infer that

unless all the mass is at two points, one of which is an endpoint.
We note that (22) is independent of m and M, so that ep is the extremal

function which minimizesf(t), for given t > z, among all moment functions
satisfying the interpolation conditions. It also minimizes f(t) for t in the
intervals (- 00,0) and (x, y), and maximizes f(t) in the complementary
intervals (0, x) and (y, z). The condition m ~ '1 < '2 ~ M is necessary
and sufficient that there exist any moment function satisfying the inter
polation conditions, whose mass has support in [m, M].
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An equivalent condition which may be useful when '1 and '2 are difficult
to determine can be given. Let rp1 and 11 be the extremal functions discussed
in Section 3 corresponding to the interpolation conditions at 0, x, and y,
and let k and K be the constants defined there (Eqs. (14), (15)). Then for
there to be a moment function, whose mass has support in [m, M], satisfying
also the interpolation condition at z, it is necessary and sufficient that the
prescribed value for fez) satisfy

Examples in which k and K are given by simple explicit formulas are given
in the previous section.

By simple considerations on the sign-variations of the coefficients, we can
easily establish the following order relations:

If any equality sign holds here, then all of the mass fL is at one or two p<»nts.
The simplest case in which we can give explicit formulas for R, '1' and 'a

is that of y = 2x, z = 3x. In this case, we have

\

m'" f(x) M'" III 1 1 1]1/'"
mMR = ma", f(2x) M2'" Im'" f(x) M'"

m3'" f(3x) M3'" m2'" f(2x) M2'"

and '1'" and '2'" are the solutions of the quadratic equation

Q(t) = t 2 - ut + v = 0,

f(3x) - f(x) f(2x)
u = f(2x) - f(X)2 '

f(x)f(3x) - f(2x)2
v = f(2x) - f(xP

The inequality m'" < '1'" < '2'" < M'" implies that

or

This lower estimate for the range, as well as the relation

or
4(f(2x) - f(X)2)(f(x)f(3x) - f(2x)2) < (f(3x) - f(x)f(2x))2,
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may be new. The equality holds here if and only if all the mass f-t is at one
point.

The value of C in (20) gives the estimate

1 1 1 1
ex ~ m'" R'" f(x) Im'" R'" M'"

mY RY f(y) mY RY MY

for the mass at the point M.
We sum up the main results of this chapter.

(23)

THEOREM 7. Equation (21) has a unique positive root R other than m
and M, and the system (22) has a unique positive solution (ri , r2) with rl < r2 ,

unless all the mass is at one point. Unless all the mass is at one or two points,
we have the order relation

m < r l < K < R < k < r 2 < M,

whei'e k and K are the solutions of(14). If q; and if; are defined by (20), then

q;(t) ~f(t) ~ if;(t)

in the intervals (- 00,0), (x, y), (z, +00), and the reverse inequality holds
in the complementary intervals. If an equality holds for any t other than
0, x, y, or z, then that equality holds identically and all the mass is at two or
three points. The mass ex at the point M satisfies (23).

6. THE STRUCTURE OF THE EXTREMAL FUNCTIONS

We now wish to establish some general results concerning the general
structure of the extremal functions, which sharpen Theorems 1 and 2.
The properties discussed here are illustrated by the phenomena occurring
in the special cases treated in the preceding sections. We use the notation of
Theorem 1.

THEOREM 8. If q; =1= if;, then the coefficient of My in if;(y) is positive:

ex(!f;) = lim !f;(y) M-Y > 0,
Y--7+:O

so that if; is the moment function of a distribution with positive mass at M.

Proof We proceed by induction. The assertion is trivially true for
n = 1. Let ~n-I = ~(XI , ... , X n - I ; CI , ... , cn - I ) be the set of moment func
tions satisfying the interpolation conditions at Xj, j < n, and let q;n-l
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and ifln-l be the extremal functions of !Fn-l . Since .?F...-I C:F, we see that

for Y > X n ·

By the induction hypothesis, we know that a(ifln-l) is positive. Furthermore,
we must have <Pn-I(Y) < ifln-l(Y) for Y > Xn- l and, in particular,
<Pn-I(Y) < ifln-I(Y)'

Now if Cn = <p(xn) = ifi(xn) is equal to <Pn-I(Xn) or ifin-I(Xn), then <P and ifi
must coincide with that extremal function of !Fn-l , by Theorem 1. It follows
that

We set

and
f = (1 - A) <pn-l + Aifin-l . (24)

Then f is in :F, so that !(Y) ~ if(y) for Y > X n , and a(if);> a(f~ ;>
Aa(ifn-l) > 0.

Remark. Using the notation of this proof, we observe that if <P == ifi
but <Pn-l 'i= ifin-l , and if a(ifi) = 0, then ifi = <Pn-l . For the f defined by (24)
is in :F, and so must coincide with if. Hence Amust be 0, i.e., Cn = ifi(xn) =
<Pn-I(Xn), and then if coincides with <Pn-l .

COROLLARY Sa. If <p 'i= ifi, then

lim ifi(y) m-Y > 0
y,,-co

lim <p(Y) m-Y > °
y-'1-".:D

for n even,

for n odd.

Proof Iff is defined by (1), then

fl(X) = f( -x) = f A'" dp,I(A),

where dp,I(A) = dp,(A-I). Thus It is the moment function of a mass
distribution confined to the interval [M-\ m-l ], and belongs to the set
!F(-Xn.m , -Xl; Cn.m , cJ. Also the extremal functions of this set are r(-x)
and ifi(-x) if n is even, and the reverse if n is odd. The corollary now follows
from the theorem.

COROLLARY 8b. The points where ifi and <p have positive masses mutually
separate each other, unless ifi - <P, and then :F has only one member.
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Proof We may assume that if; =F- rp. Suppose that n is even. Then if; has
positive masses at m and M and at no more than (n - 2)/2 interior points
of the interval [m, M]. If all the masses of rp are at interior points, then
there can be at most nl2 of these. Thus the difference if; - rp contains at most

2 + (n - 2)/2 + (nI2) = n + 1

terms, and so can have at most n sign-variations in its coefficients. But it
has at least n real roots and therefore at least this many sign-variations.
Therefore there are exactly n + 1 terms, and the coefficients have alternating
signs.

If rp has a mass at either endpoint, then that mass is not more than that
of if; at the same point. Thus the difference if; - rp has a nonnegative mass
at such an endpoint. Since rp can have at most (n - 2)/2 masses at interior
points, the difference cannot have more than n terms, which is impossible.

The case of odd n is treated similarly. Now each of the extremal functions
has positive masses at one endpoint and (n - 1)/2 interior points.

The discussion, in the course of this proof, of the number of terms in
if; - rp yields also

COROLLARY 8c. If if; =F- rp, then both have exactly weight n.

Remark. We can now improve the previous remark. If rp = if; but
rpn-l =1= if;n-l , and 0:( if;) > 0, then if; == if;n-l . For if not, Ain (24) is positive,
and I has positive masses at both endpoints and at n - 2 interior points.
Hence the weight of if; (which coincides with 1) is 2 + 2(n - 2) = 2n - 2,
and this is greater than n if n > 2. The case n = 2 follows from the explicit
formulas in (6) and (7).

Let ffk = ff(xi , ... , Xk ; CI ,... , Ck) and let rpk and if;k be the extremal
functions of~ .

THEOREM 9. lithe weight 01 if; is k, k < n, then if; coincides with rpk or if;k'

Prool We have rpk(Y):::;; if;(y) ~ if;k(Y) for Y > Xk' If if; =F- if;k' then
if;(y) < if;iY) for Y > Xk . Since the weight of if; is k, then the number of
real roots of if; - J, for any moment function I of a discrete distribution
with support in [m, M], is at most k, unless lj; == I Hence for I E~ ,f 'F lj;,
this difference has only the k zeros Xl".', Xk . Let

A = Ck+l - rpk(Xk+l)
lj;k(Xk+l) - rpk(Xk+l) ,

and
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Since f(Xk+l) = lj;(Xk+l) and f E ~, it follows that f == lj;. If °< ,\ < 1,
then f has exactly k + 1 terms, corresponding to positive masses at m
and M and at k - 1 interior points. Thus the weight off is

2 + 2(k - 1) = 2k > k,

which gives us a contradiction. Therefore lj;(xk+l) = Ck+l must equal l)?k(Xk+l),
since ,\ < I, and our assertion follows.

If the interpolation points Xj are in arithmetic progression, then the
points, at which either extremal function has positive masses, are the zeros
of a quasiorthogonal polynomial. The interlacing property of these points,
expressed in Corollary 8b, reduces to the classical separation property of the
zeros of these polynomials. (See [13], pp. 36-38.)

ApPENDIX

We give here a brief discussion of the function h defined in (12), which
completes in some minor respects, that of Marshall and Olkin [8] which is
used by Mond and Shisha [9]. We shall treat here the case where °< x < y.
The other cases can be handled in a similar way.

If °< x < y, then A < °< B in (12). Then h(t) is defined only for
A + Bta: ;;:, 0, that is,

t ;;:, to = (-AjB)1fx.

This function h(t) is positive if and only if the power sum

H(t) = A + Bta: - t Y > 0.

Since there are two sign-variations in the coefficients of H, H can have at
most two nonnegative zeros. Since H(1) = H(y) = 0, there are no others.
Also H is negative for small or large t. Hence H is negative in (0, I) and in
(y, + ex), and positive in (1, y). Therefore also h is positive in (1, y) and
negative outside this interval. By Rolle's theorem h' has a zero in (1, y).

For y =1= I, an elementary computation shows that if h'(t) = 0, then

J(t) = A + Bta: - CltZ = 0,
where

z = y(l - x)j(l - y),

and CI is the positive number defined in the statement of Corollary 4b.
If x < 1 < y, then z < °while if 1 < x < y, then 0< z < x, and in either
case J, and therefore h' has at most one nonnegative root. If y < 1, then
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x < z and J has at most two nonnegative zeros. But if y < 1, then h'(to) =

-1 < 0, so that h has a relative minimum in (to, I). Then h' has exactly
two zeros, one in (to, 1) and one in (1, y).
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